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Table A1. Belief Crossing and CEF Discounts: Controlling for Investor Sentiment 
 
This table replicates Table 2, but now controls for investor sentiment (while omitting year-quarter fixed effects). In Column 
1, Sentiment is the Consumer Confidence Index as compiled by The Conference Board; in Column 2, we use the Baker and 
Wurgler sentiment index; in Column 3, we use the Consumer Sentiment Index computed by the University of Michigan. 
Our controls are identical to those in Table 2. All independent variables are normalized to have a standard deviation of 
one. We include fund-fixed effects. T-statistics are reported in parentheses and are based on standard errors clustered by 
fund and year-quarter. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. 
 

 

Consumer Confidence 
Index by The 

Conference Board 
 

(1) 

Baker-Wurgler 
Sentiment Index 

(2) 

Consumer Sentiment 
Index by the University 

of Michigan 
(3) 

    
InvCov    -0.520*** 

(-2.61) 
-0.561*** 

(-2.78) 
-0.577** 
(-2.42) 

Disagreement 0.252 
(0.60) 

0.181 
(0.55) 

0.282 
(0.81) 

Crossing 
 

0.106 
(0.64) 

0.175 
(0.98) 

0.153 
(0.88) 

    
Sentiment 0.125 

(0.21) 
-0.085 
(-0.87) 

-0.0679 
(-1.15) 

Sentiment * ln(MarketCap) -0.402 
(-1.05) 

0.020 
(1.31) 

0.022 
(0.55) 

Sentiment * IO -0.508 
(-1.14) 

-0.637 
(-0.13) 

0.061 
(1.60) 

Sentiment * Idiosyncratic Volatility -0.029 
(-0.12) 

0.0211 
(1.13) 

0.0702 
(0.25) 

ln(MarketCap) -2.502 
(-1.13) 

-1.545 
(-1.05) 

-4.058 
(-0.79) 

IO 0.192 
(0.62) 

-0.645 
(-1.56) 

-0.058* 
(-1.73) 

Idiosyncratic Volatility -0.550 
(-0.95) 

0.196 
(0.19) 

-0.946 
(-0.40) 

    
Controls Yes Yes Yes 
#Obs. 1,906 1,906 1,906 
Adj. R2 0.830 0.832 0.830 

 
 
  



Table A2. Belief Crossing and Future Returns 
 
This table documents coefficient estimates from two sets of pooled OLS regression of future one-year return on a measure 
of investor disagreement and belief crossing. In Column 1, we report coefficient estimates from pooled OLS regressions 
of one-year four-factor adjusted returns of CEFs on InvCov. The dependent variable is the future CEF’s one-year four-
factor adjusted return (based on prices, not NAVs). In Column 2, we report coefficient estimates from regressions of post-
M&A one-year returns on investor disagreement and belief crossing about the acquirer and the target. The dependent 
variable is the one-year post-M&A DGTW adjusted stock return. We construct InvCov as follows: For each stock pair 
involving securities of the CEF’s top-ten holdings, we compile a list of brokerage houses that cover both firms and we 
compute the Spearman rank correlation in earnings forecasts between these two firms; we also compute the forecast 
dispersion for each of the two firms. PairwiseCov is the product of the Spearman rank correlation and the average forecast 
dispersion. In Column 1, we aggregate PairwiseCov to InvCov as the portfolio-weighted average PairwiseCov across all stock 
pairs, multiplied by negative one. In Column 2, InvCov is simply PairwiseCov, multiplied by negative one. A large positive 
realization of InvCov suggests a high level of belief crossing. In Column 1, our controls are identical to those in the CEF 
discount regression. In Column 2, our controls are identical to those in the Combined-Announcement-Day-Return 
regression. All independent variables are normalized to have a standard deviation of one. T-statistics are reported in 
parentheses and are based on standard errors clustered by time. Statistical significance at the 10%, 5%, and 1% levels is 
denoted by *, **, and ***, respectively. 
 

 
Future CEF Returns  

(1) 
Post-M&A Return 

(2) 

   
InvCov    0.0044* 

(1.81) 
   0.034** 

(2.37) 
Disagreement   -0.001** 

(0.16) 
   0.028* 

(1.94) 
Crossing 
 

-0.002 
(-0.83) 

0.003 
(0.20) 

   
Controls Yes Yes 
#Obs. 6,216 392 
Adj. R2 0.319 0.180 

 
 
  



Table A3. Belief Crossing and Exchange-Traded Fund Flows 
 
This table reports coefficient estimates from pooled OLS regressions of monthly ETF flows on a measure of investor 
disagreement and belief crossing. The dependent variable is the percentage change in the number of shares outstanding 
of the ETF. The independent variables are as in Table 5, but now represent quarterly changes (rather than levels). All 
independent variables are normalized to have a standard deviation of one. We include year-quarter-fixed effects (we no 
longer include fund-fixed effects since all of our variables are now first-differenced). T-statistics are reported in parentheses 
and are based on standard errors clustered by both fund and year-quarter. Statistical significance at the 10%, 5%, and 1% 
levels is denoted by *, **, and ***, respectively. 
 

  (1) 

  
∆InvCov 
 

   -0.380*** 
(-3.05) 

∆Disagreement 
 

  -0.434** 
(-2.48) 

∆Crossing 
 

0.165 
(1.40) 

∆Dividend Yield  0.437* 
(1.75) 

∆Liquidity Ratio 
 

   -1.277*** 
(-8.54) 

∆Expense Ratio -0.024 
(-0.30) 

∆Excess Idiosyncratic Volatility 
 

   -0.517*** 
(-4.71) 

∆Excess Skewness 
 

0.057 
(0.32) 

  
Lagged Returns Yes 
Lagged Flows Yes 
  
# Obs. 8,092 
Adj. R2 0.026 

 
  



Context for “Table A4. ETF Spillover Effects” 
 
The results in our paper indicate that authorized participants are price stabilizing. However, there is a flip-side 
to this arbitrage mechanism. Consider an ETF holding three securities, A, B and C. Assume that investors 
strongly disagree about the values of A and B and that disagreement offsets when the two securities are viewed 
as a whole. Investors, in the meanwhile, disagree little about security C.  
 
In the absence of arbitrage forces, the ETF will trade at a discount relative to its underlying assets because of 
its holdings in A and B. If authorized participants redeem ETF shares and sell the underlying portfolio and/or 
if other smart investors buy ETF shares and simultaneously short the underlying portfolio to take advantage of 
the ETF discount, the price of C may fall initially due to the selling pressure, only to rebound subsequently. 
Note that the spillover mechanism we describe here is independent from the investor disagreement channel tested 
in prior literature, as there is little investor disagreement regarding stock C. 
 
To explore this idea, we construct a measure of PeerInvCov. For all non-top-ten stocks, PeerInvCov equals InvCov 
computed across the top-ten holdings. For top-ten stocks, PeerInvCov is the InvCov computed across the other 
nine top-ten stocks. For each stock, we take the TNA-weighted average PeerInvCov across all ETF holdings in 
that stock. If arbitrage trades – both from authorized participants and other smart investors – have a meaningful 
impact on the price of C (due to price pressure), we expect PeerInvCov to negatively associate with 
contemporaneous stock returns, but to positively predict future returns. 
 
We start with checking the contemporaneous return patterns and we employ the same event window as in the 
flow test.1 Specifically, we examine how stock returns in the three months (i.e., -1, 0, 1) surrounding the ETF’s 
quarter end reporting date relate to quarterly changes in PeerInvCov. We focus on the change rather than level of 
PeerInvCov because it is the shock to PeerInvCov (a highly persistent variable) that triggers arbitrage trading (similar 
to ∆InvCov triggering ETF flows). Further, since the return effect should be concentrated in the part of the 
sample with large ΔPeerInvCov, we compare stocks in the top quintile in terms of ΔPeerInvCov with stocks in the 
other four quintiles. (Our results would go through if we instead compare the top ΔPeerInvCov quintile with the 
bottom quintile.) Consistent with our conjecture, in untabulated analyses, we find that the average cumulative 
four-factor alpha of the top quintile is -1.2% (t-statistics = -1.77) while the average alpha of stocks in the other 
four quintiles is 0.12% (t-statistics = 1.10). The difference between the two is statistically significant (Δ 
= -1.56%, t-statistics = -2.31). 
 
We next examine whether stock prices bounce back after the initial drop. To this end, we employ both a 
portfolio approach and a Fama-MacBeth (1973) regression analysis. In the calendar-time portfolio test, we sort 
stocks into quintiles based on PeerInvCov as of month zero, and go long the top quintile and short the bottom 
four quintiles from months 2 through 6. We argue that for the purpose of detecting the return reversal, the 
level of PeerInvCov reflects the cumulative effect of arbitrage trades to date and is thus the right variable to focus 
on. As shown in Panel A of Table A4, stocks in the top quintile outperform their peers, on a four-factor adjusted 
basis, by 0.34% (t-statistic = 2.27) to 0.50% (t-statistic = 3.07) per month in these five months, or by 1.7% to 
2.45% over the entire period. The magnitude of the reversal pattern lines up well with the magnitude of the 
initial price drop. 
 
In Panel B, we estimate Fama-MacBeth (1973) regressions. The dependent variable is the monthly DGTW-
adjusted return. The independent variable of primary interest is each stock’s PeerInvCov. We also include in the 
regression the stock’s own earnings forecast dispersion, and other controls that are known to forecast future 
stock returns. All independent variables are normalized to have a standard deviation of one with the exception 
of PeerInvCovQR, which is the quintile ranking of PeerInvCov. 
 
                                                           
1 Our sample consists of NYSE/AMEX/NASDAQ common stocks with price-per-share greater than $5 and with fraction 
of shares held by ETFs greater than the median of its distribution. 



As shown in Column 2 of Panel B, after controlling for the stock’s own earnings forecast dispersion, the 
coefficient estimate on the quintile dummy PeerInvCovQR is 0.102 (t-statistic = 2.78). This implies that stocks in 
the top quintile outperform those in the bottom quintile by nearly 41bps (0.102 * 4 = 0.408) per month in the 
next five months. The point estimate increases to 0.150 (t-statistic = 2.43) if in each cross section, we estimate 
a weighted-least-square regression where the weight is proportional to each stock’s lagged market capitalization. 
Overall, the evidence confirms our prediction that arbitrage trades that are aimed to correct the discrepancy 
between the ETF value and underlying portfolio value can sometimes have a destabilizing effect on some of 
the underlying securities.  
 
  



Table A4. ETF Spillover Effects 
 

This table reports the profitability of a trading strategy exploiting the ETF spillover effect.  For each stock, we construct 
PeerInvCov as discussed above. The sample consists of common stocks traded in NYSE/AMEX/NASDAQ for which the 
price-per-share is greater than $5 and fraction of shares held by ETFs is greater than the median of its distribution. We 
skip a month after portfolio formation and we hold the portfolios for six months. Panel A reports the monthly Carhart 
(1997) factor alphas for the “highest PeerInvCov quintile” portfolio and the “remaining four quintile” portfolio. Panel B 
reports coefficient estimates from monthly Fama-MacBeth (1973) regressions of DGTW-adjusted returns [%] on 
PeerInvCov. We use quintile rankings (0-4) for PeerInvCov; all other independent variables are normalized to have a standard 
deviation of one. In Columns 1 and 2 of Panel B, we equal-weight each month. In Columns 3 and 4 of Panel B, we weight 
by market capitalization. T-statistics are based on Newey-West (1987) standard errors with six lags and are reported in 
parentheses. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. 
 

Panel A: Portfolio Approach 

 Equal-
Weighted  T-Statistics  Value- 

Weighted  T-Statistics 

Top PeerInvCov Quintile 0.35% [2.55]  0.42% [2.93] 

Other PeerInvCov Quintiles 0.01% [0.14]  -0.08% [-2.02] 

Top-Other 0.34% [2.27]  0.50% [3.07] 
 

Panel B: Regression Approach 

 OLS 
(1) 

OLS 
(2) 

WLS 
(3) 

WLS 
(4) 

     
PeerInvCov 0.119*** 

(2.70) 
0.102*** 

(2.78) 
0.187** 
(2.13) 

0.150** 
(2.43) 

Ln(MarketCap)  -0.148** 
(-2.55) 

 -0.103 
(-0.54) 

Book-to-Market Ratio  -0.050 
(-0.80) 

 0.042 
(0.28) 

Past-One-Year Returns  -0.067 
(-0.36) 

 0.030 
(0.11) 

Turnover  -0.167 
(-1.37) 

 0.713*** 
(2.83) 

Dispersion  -0.215*** 
(-2.99) 

 -0.984*** 
(-2.68) 

Volatility  -0.012 
(-0.18) 

 -0.729*** 
(-2.63) 

     
# Qtrs. 36 36 36 36 
Adj. R2 0.003 0.038 0.022 0.143 

 
  

http://www.baidu.com/link?url=zl44yuWE4MX4PBnXkiOWYsspxfaTTNZDAY_KeY8AWqmlPtlzrARvJK--HzyxwrtbWgj-b_3aBpFvks-nCxJoPTsHLFEsqzFVq7B8EVqhWs3


Table A5. Belief Crossing and Operating Performance of the Combined Firm 
 
This table reports coefficient estimates from regressions of post-M&A operating performance measures on a measure of 
investor disagreement and belief crossing about the acquirer and the target. The dependent variable is the post-M&A five-
year average of ROA, ROE, Profitability and Sales Growth. We construct InvCov as follows: We compile a list of brokerage 
houses that cover both the acquirer and the target and we compute the Spearman rank correlation in earnings forecasts 
between these two firms; we also compute the forecast dispersion for each of the two firms. InvCov is the product of the 
Spearman rank correlation and the average forecast dispersion, multiplied by negative one. A large positive realization of 
InvCov suggests a high level of embedded belief crossing. In Panels B and C, we augment InvCov with (1-IO) and with (1-
IO) * SI, respectively, where IO is the residual institutional ownership and SI is short interest. Our controls are identical to 
those in the Combined-Announcement-Day-Return regression. All independent variables are normalized to have a 
standard deviation of one. We include year-fixed effects. T-statistics are reported in parentheses and are based on standard 
errors clustered by year. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. 
 

 ROA  
 

(1) 
ROE 

 

(2) 
Profitability  

 

(3) 
Sales Growth 

 

(4) 
 

InvCov 0.000 
(0.00) 

0.003 
(0.29) 

0.008 
(1.01) 

0.003 
(0.38) 

Disagreement -0.005* 
(-1.96) 

-0.013* 
(-1.79) 

-0.006 
(-0.97) 

-0.009 
(-1.43) 

Crossing 
 

-0.001 
(-0.40) 

0.001 
(0.09) 

0.002 
(0.29) 

0.005 
(0.71) 

#Obs. 363 363 363 363 
Adj. R2 0.568 0.451 0.349 0.281 

 
  



Table A6. Belief Crossing and Likelihoods of CEF/ETF IPOs 
 

This table reports coefficient estimates from a logit regression of sector-CEF/ETF IPOs on a measure of investor 
disagreement and belief crossing about the sector. Specifically, we compute, for each two-digit SIC-code industry in each 
year-quarter, the average level of embedded belief crossing across all stock pairs within that industry. We then examine 
whether the creation of CEFs and ETFs specializing in that industry is tied to the corresponding level of belief crossing. 
The dependent variable equals one if the industry/year-quarter has at least one CEF or ETF IPO specializing in that 
industry, and zero otherwise. The independent variables include belief crossing (InvCov), market capitalization, book-to-
market ratio and past one-year returns, all at the industry/year-quarter level. All independent variables are normalized to 
have a standard deviation of one. Z-values are reported in parentheses and are based on standard errors clustered by year-
quarter. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. 
 

 Sector Fund IPOs 
 (1) 

  
InvCov   -0.146*** 

(-2.80) 
Disagreement 0.145 

(1.11) 
 Crossing 

 
0.191 
(1.14) 

  
Industry Characteristics: Yes 
  
# Obs. 816 
Pseudo R2 0.049 

 
 

  



Table A7. Belief Crossing and Likelihoods of Mergers and Acquisitions 
 
This table reports coefficient estimates from logit regressions of M&A announcements on a measure of investor 
disagreement and belief crossing about actual acquirer-target pairs and pseudo acquirer-target pairs. For each M&A 
announcement in our sample, we construct a set of counterfactual firm pairs, which are similar to the actual M&A pair 
along an array of observable firm characteristics, but involve firms that did not engage in an M&A. Specifically, for each 
firm involved in an M&A, we identify ten pseudo acquirers and ten pseudo targets that are in the same two-digit-SIC-code 
industry as, and are the closest to, the actual acquirer and the actual target along the dimensions of firm size, book-to-
market ratio and past one year returns, using a propensity score matching approach. In Column (1), we individually match 
the actual acquirer with each of the ten pseudo targets, resulting in ten counterfactual firm pairs. In Column (2), we reverse 
the matching and individually match the actual target with each of the ten pseudo acquirers, resulting in ten counterfactual 
firm pairs. In Column (3), we match each of the ten pseudo acquirers with each of the ten pseudo targets, resulting, again, 
in ten counterfactual firm pairs. The dependent variable equals one for actual M&A pairs, and zero for counterfactual firm 
pairs. InvCov is the level of belief crossing of the actual- and the pseudo acquirer-target pairs. The remaining independent 
variables are the same as in the combined-announcement day-return regression, but are now averaged to the firm-pair 
level. All independent variables are normalized to have a standard deviation of one. Z-values are reported in parentheses 
and are based on standard errors clustered by year. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, 
**, and ***, respectively. 
 

 Pseudo  
Target Only 

(1) 

Pseudo  
Acquirer Only 

(2) 

Pseudo Acquirer and 
Pseudo Target 

(3) 
    
InvCov     -0.090*** 

(-2.73) 
   -0.134*** 

(-3.94) 
    -0.132*** 

(-4.13) 
Disagreement 0.069 

(0.91) 
 

-0.081 
(-1.11) 

-0.084 
(-1.11) 

 Crossing 
 

  0.261** 
(2.46) 

 

    0.419*** 
(3.92) 

   0.323*** 
(3.20) 

     
Acquirer Characteristics: Yes 

 
Yes 

 
Yes 

 Target Characteristics: Yes 
 

Yes 
 

Yes 
 Deal Characteristics: Yes 

 
Yes 

 
Yes 

     
# Obs. 3,091 3,630 3,740 
Pseudo R2 0.038 

 
0.019 0.023 

 
  



Figure A1. Survey Design 
 

 
 
The following questions will ask you which sources of information you used when investing in a fund. 

The sources, along with hyperlinks of what some of these sources likely looked like, are as follows: 

• Sources: 

o The fund's website 

o Some other investment related website 

o The fund's Fact Sheet (basic 3-4 page document that provides an overview of a fund) 

o The fund's Prospectus (compared with the Fact Sheet, a much longer document that provides 

details on a fund; primarily filed to inform potential new investors) 

o The fund's Annual Report (compared with the Fact Sheet, a much longer document that provides 

details on a fund; compared with the Prospectus, more of an ongoing annual "report card" filed to 

inform new and current investors) 

o Discussion of the fund in a print or online article 

o Recommendation by a family member, friend, colleague, or other acquaintance 

o Recommendation by your financial advisor 

o Advertisement 

o Other 

Please click on all the hyperlinks before answering any of the questions below. 
 
 
 
 
 
 
 
 
 

https://cornell.qualtrics.com/CP/File.php?F=F_8rawtTrPVxIvkRD
https://cornell.qualtrics.com/CP/File.php?F=F_egnlX7Q5KGbtU1f
https://cornell.qualtrics.com/CP/File.php?F=F_8BRuGOGxlYfP9Jj


 

 
 
 

 
 
  



Figure A2. Survey Procedure and Results 
 

We design a Qualtrics survey as shown in Figure A1. We recruit survey participants via Prolific 
(https://prolific.ac). We require that participants reside in the U.S. and report “yes” to the following 
two questions within Prolific: (1) “Have you ever made investments (either personal or through your 
employment) in the common stock or shares of a company?”, (2) “Have you invested in any of the 
following types of investment in the past?: ETF or ETC, Government Bonds or Stock Market.” 
Within our Qualtrics survey, we also ask “Have you ever invested in either a mutual fund, an exchange-
traded fund, or a closed-end fund, and the fund was NOT just mimicking a broader index such as the 
S&P 500 (i.e., the fund was NOT an index fund),” and we require survey participants to respond with 
“yes.” Each participant is paid the equivalent of $30/hour for successful survey completion, which is 
above the minimum pay requested by Prolific of $7.50/hour. A total of 114 participants completed 
our survey. We report the survey responses below. 

 
Sources Fraction of participants reporting to draw from  

a particular sources 
Q2 Q3 

(1) The fund’s website 
 

57% 42% 

(2) Some other investment related website 
 

49% 48% 

(3) Fact Sheet 
 

72% 61% 

[Either (1), (2) or (3)] 
 

[93%] [100%] 

(4) Prospectus 
 

52% 52% 

(5) Annual Report 
 

38% 44% 

(6) Discussion of the fund in a print or online 
article 

33% 28% 

(7) Recommendation by a family member, 
friend, colleague, or other acquaintance 

45% 25% 

(8) Recommendation by your financial advisor 
 

31% 29% 

(9)  Advertisement 
 

5% 0% 

(10)    Other 
 

75% 61% 

 
 

 
 
 
 
 
 

https://prolific.ac/


Online Appendix
A Model of Investor Disagreement and

Belief Crossing



1 Model Setup

The economy lasts for two periods, t = 0 and 1. On day 0, a financial market operates and

investors trade financial assets. On day 1, asset payoffs are realized. Two assets are traded in

the financial market. Without loss of generality, asset i ∈ {1,2} has a positive constant supply,

which is normalized to be one unit, and pays a liquidating dividend of f̃i.

For tractability, all investors are assumed to be risk-neutral. There are four types of investors j∈

{OO,OP,PO,PP}, with different beliefs about assets’ final payoffs. “O” indicates optimism and

“P” indicates pessimism. More specifically, type-OO investors are optimistic about both assets;

type-PP investors are pessimistic about both assets; type-OP investors are optimistic about asset 1,

but pessimistic about asset 2; finally, type-PO investors are pessimistic about asset 1, but optimistic

about asset 2. We assume that the population of investors that are optimistic (or pessimistic)

about both assets (type-OO or type-PP) is 1− λ , and the population of investors with opposing

views (type-OP or type-PO) is λ (0≤ λ ≤ 1). In other words, the population of investors that are

optimistic (pessimistic) about either asset is exactly 1. Meanwhile, λ captures the degree of “belief

crossing” among investors.

We further assume that investors that are optimistic about asset i believe that asset i’s final

payoff is 1+σ ; conversely, investors that are pessimistic about asset i believe that asset i’s final

payoff is 1−σ . We use E(·) to denote investors’ beliefs in the following analysis. Here, σ captures

the degree of disagreement among investors. Given limited liability of stocks (i.e., stock payoffs

can not be negative), we further assume that 0 < σ ≤ 1.

Investors trade both assets to maximize expected utilities based on their beliefs. Trading is

costly in the economy. We follow the literature (e.g., Gârleanu and Pedersen, 2013; Dávila and

Parlatore, 2018; Huang, Qiu and Yang, 2018) to introduce a quadratic cost function for type- j

investors’ demand for asset i:
1
2
×X2

j,i.

This quadratic form of transaction costs is common in the theoretical literature and is a reduced-

form approach to modeling transaction frictions. In economic terms, the transaction cost in our

1



setting can be interpreted as commission fees, inventory costs, or operation costs. Consequently,

type- j investors’ utility optimization problem can be summarized as:

max
X j,1,X j,2

2

∑
i=1

[
X j,iE j( f̃i)−X j,i p̃i−

1
2
×X2

j,i

]
.

Without Short-Sale Constraints, it is clear that type- j’s demand for asset i (from the first-

order condition) is:

X j,i = E j( f̃i)− p̃i.

With Short Sales Constraints, we assume that investors, who want to sell short, can only do so

up to a non-negative fraction, β (< 1), of their initial demand. Intuitively, β captures the shorting

cost or shorting difficulty. With a larger β , investors face a less binding short-sale constraint.

Because the second-order condition from the above optimization is always negative, when E j( f̃i)−

p̃i is negative, type- j’s demand for asset i is: X j,i = β [E j( f̃i)− p̃i].

Equilibrium: On day 0, the financial market opens and investors submit their demand sched-

ules subject to short-sale constraints. Equilibrium prices are determined by the market clearing

condition.

Discussion: In Reed, Saffi and Van Wesep (2016), there are only two types of investors with

opposing beliefs about the two assets. In other words, the setting considered by Reed, Saffi and

Van Wesep (2016) is a special case of our model with λ = 1. Consequently, we use our model

to highlight the role of both investor disagreement (σ ) and belief crossing (λ ) in driving portfolio

discounts.

2 Benchmark Case: No Short-Sale Constraints

This section solves the benchmark model without short-sale constraints, i.e., when β = 1.

2



Individual Assets: Demand by optimistic investors for asset i is 1 + σ − p̃i, and that by

pessimistic investors is 1−σ − p̃i. This yields the following set of equilibrium prices:

LEMMA 1. p̃1 = p̃2 =
1
2 .

Proof. See the model solution section.

An Equal-Weight Portfolio: Now consider a portfolio C that has equal weights in both assets.

The sum of its components is f̃C = 0.5 f̃1 +0.5 f̃2. Denote the price of this portfolio p̃C (assume it

is separately traded). Demand for this portfolio can be characterized as:

XOO,C = 1+σ − p̃C,

XOP,C = 1− p̃C,

XPO,C = 1− p̃C,

XPP,C = 1−σ − p̃C.

Market clearing then implies:

LEMMA 2. p̃C = 1
2 .

Proof. See the model solution section.

It is clear from Lemma 1 and Lemma 2 that absent short-sale constraints, the portfolio value is

equal to the sum of its parts.

3 General Case: with Short-Sale Constraints

This section solves the model with short-sale constraints, i.e., when 0≤ β < 1.

Individual Assets: In the presence of short-sale constraints, pessimistic investors, who want

to sell short, are unable to sell to the full extent. Consequently, asset prices do not fully reflect

3



pessimists’ views and are biased upward. Moreover, holding the average investor belief constant,

when investors disagree more strongly, equilibrium asset prices are more upward biased:

LEMMA 3. When σ ≤ 1
2 , the prices of both assets are p̃1 = p̃2 =

1
2 ; When σ > 1

2 , the prices of both

assets are p̃1 = p̃2 =
β+σ(1−β )

1+β
> 1

2 .

Proof. See the model solution section.

An Equal-Weight Portfolio: We again consider a portfolio that invests 50-50 in both assets.

Market clearing implies:

LEMMA 4. When σ ≤ 1
2 , the price of the portfolio is: p̃C = 1

2 ; When σ > 1
2 , the price of the

portfolio is: p̃C = λ+(1−λ )β+σ(1−λ )(1−β )
1+λ+(1−λ )β .

Proof. See the model solution section.

We define the portfolio discount as the difference between the portfolio value and the sum of

its components’ value: discount = 1− p̃C/(0.5p̃1 +0.5∗ p̃2).

PROPOSITION 1. When σ ≤ 1
2 , the portfolio value is equal to the sum of its components. That is:

p̃C = 0.5 p̃1 +0.5 p̃2. When σ > 1
2 , the portfolio value is less than the sum of its components. That

is: p̃C < 0.5p̃1 +0.5p̃2.

Proof. See the model solution section.

Proposition 1 shows that the presence of short-sale constraints is a necessary condition to

generate a portfolio discount. Lemma 4 further shows that, with short-sale constraints, both

disagreement σ and the degree of “belief crossing” λ affect the portfolio value and consequently

the discount. Formally, the joint effect of disagreement and “belief crossing” on portfolio discounts

satisfies the following condition:

PROPOSITION 2. When σ ≤ 1
2 , ∂ 2discount

∂σ∂λ
= 0; When σ > 1

2 , ∂ 2discount
∂σ∂λ

> 0;

Proof. See the model solution section.
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4 Model Solution

This section provides all proofs omitted above with auxiliary results.

PROOF OF LEMMA 1. When there are no short-sale constraints, all investors trade the asset i (i= 1

and 2). Inserting investors’ demands into the market clearing condition, we get

1+σ − p̃i +1−σ − p̃i = 1, (4.1)

and then directly solve the price of asset i as p̃i =
1
2 .

PROOF OF LEMMA 2 . When there are no short-sale constraints, all investors trade the portfolio.

Inserting investors’ demands into the market clearing condition, we get

(1−λ )XOO,C +λXOP,C +(1−λ )XPO,C +λXPP,C = 2−2p̃C = 1. (4.2)

We directly solve the price of the portfolio as p̃C = 1
2 .

PROOF OF LEMMA 3 . With short-sale constraints, the equilibrium prices depend on whether the

pessimistic investors long or short the assets. With the symmetry, we can focus on one asset, i.e.,

asset 1. There are two scenarios: the pessimistic investors (type−PO and type−PP) long the

asset 1, and the pessimistic investors short the asset 1. We solve the price of asset 1 for these two

scenarios as follows.

1. If pessimistic investors long the asset 1, inserting investors’ demands into the market clearing

condition, we get

1+σ − p̃i +1−σ − p̃i = 1, (4.3)

and then solve the price of asset 1 as p̃i =
1
2 . After that, we need to ensure that the pessimistic

investors indeed long the asset 1 in the equilibrium. When p̃i =
1
2 , the demand of pessimistic
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investors is 1
2 −σ . It is clear that when σ ≤ 1

2 , pessimistic investors long the asset 1.

2. If the pessimistic investors short the asset 1, inserting investors’ demands into the market

clearing condition, we get

1+σ − p̃i +β (1−σ − p̃i) = 1, (4.4)

in which only a proportion of shorted shares (β ) can be fulfilled. From the market clearing

condition, we solve the price of asset 1 as

p̃i =
β +σ(1−β )

1+β
. (4.5)

After that, we need to ensure that the pessimistic investors indeed short the asset 1 in the equi-

librium. When p̃i =
β+σ(1−β )

1+β
, the demand of pessimistic investors is 1−σ − β+σ(1−β )

1+β
, which

equals 1−2σ

1+β
. It is clear that when σ > 1

2 , pessimistic investors short the asset 1.

PROOF OF LEMMA 4 . Different from the Lemma 3, there are two groups of pessimistic investors:

one group consists of type−OP and type−PO, and the other group only consists of type−PP. It

is clear that the first group has larger demand for the portfolio than the second group. There are

three potential scenarios, which depend on the shorting status of different groups of pessimistic

investors. We solve the price of the portfolio in different scenarios as follows.

1. If both groups of pessimistic investors long the portfolio, inserting investors’ demands into

the market clearing condition, we get

(1−λ )XOO,C +λXOP,C +(1−λ )XPO,C +λXPP,C = 2−2p̃C = 1. (4.6)

Then we solve the price of the portfolio as p̃C = 1
2 . After that, we need to ensure that all pessimistic

investors indeed long the portfolio in the equilibrium. To find the condition for all investors to

long the portfolio, we can only focus on the demand of the most pessimistic investors (type−PP).

The demand of type−PP is 2− 2σ − 2p̃C, which equals 1− 2σ . It is clear that when σ ≤ 1
2 , all
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pessimistic investors long the portfolio.

2. If the first group of pessimistic long the portfolio and the second group short the portfolio,

inserting investors’ demands into the market clearing condition, we get

(1−λ )XOO,C +λXOP,C +(1−λ )βXPP,C +λXPO,C (4.7)

= (1−λ )(1+σ − p̃C)+2λ (1− p̃C)+(1−λ )β (1−σ − p̃C) (4.8)

= 1. (4.9)

(Note: only a proportion of shorted shares (β ) from the second group can be fulfilled). We solve

the price of the portfolio as

p̃C =
λ +(1−λ )β +σ(1−λ )(1−β )

1+λ +(1−λ )β
. (4.10)

After that, we need to ensure that the most pessimistic investors indeed short the portfolio and the

least pessimistic investors indeed long the portfolio. The demand of the most pessimistic investors

(type−PP) is negative, which yields

XPP,C < 0 (4.11)

⇔ σ >
1
2
. (4.12)

The demand of the least pessimistic investors (type−PO or type−OP) is non-negative, which

yields

XPO,C ≥ 0 (4.13)

⇔ σ ≤ 1
(1−λ )(1−β )

. (4.14)

Because 1
(1−λ )(1−β ) > 1, so σ is always smaller than 1

(1−λ )(1−β ) under the assumption that σ ≤ 1.

3. If both groups of pessimistic investors short the portfolio, inserting investors’ demands into

7



the market clearing condition, we get

(1−λ )XOO,C +λβXOP,C +(1−λ )βXPP,C +λβXPO,C (4.15)

= (1−λ )(1+σ − p̃C)+2λβ (1− p̃C)+(1−λ )β (1−σ − p̃C) (4.16)

= 1. (4.17)

We solve the portfolio price as:

p̃C =
σ −λ (1+σ)+2λβ +(1−λ )β (1−σ)

(1−λ )+β +λβ
. (4.18)

After that, we need to ensure that both groups of pessimistic investors indeed short the portfolio

in the equilibrium. Given that the less pessimistic investors have higher demand than the most

pessimistic ones, we can focus on the demand of least pessimistic investors. The demand of the

least pessimistic investors (i.e., type−OP) is negative, which yields

σ −λ (1+σ)+2λβ +(1−λ )β (1−σ)

(1−λ )+β +λβ
> 1 (4.19)

⇔ σ >
1

(1−λ )(1−β )
. (4.20)

Under the assumption that σ ≤ 1, the above inequality is impossible. Thus, only Scenario 1 and 2

are relevant.

PROOF OF PROPOSITION 1. We prove this proposition for different levels of σ : σ ≤ 1
2 and σ > 1

2 .

(1) When σ ≤ 1
2 , the portfolio price is 1/2, which equals the equal-weighted underlying asset

prices.

(2) When σ > 1
2 , the difference between the portfolio price and the equal-weighted underlying

asset prices is
λ +(1−λ )β +σ(1−λ )(1−β )

1+λ +(1−λ )β
− β +σ(1−β )

1+β
, (4.21)
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which equals

− λ (1−β )

1+β

(2σ −1)
1+λ +(1−λ )β

. (4.22)

Because σ > 1
2 and β < 1, the above equation is always negative. This suggests that the portfolio

price is smaller than the equal-weighed underlying asset prices.

PROOF OF PROPOSITION 2. We prove this proposition for different levels of σ : σ ≤ 1
2 and σ > 1

2 .

(1) When σ ≤ 1
2 , the portfolio price is 1/2. It is easy to get that ∂ 2discount

∂σ∂λ
= 0.

(2) When σ > 1
2 , the direct calculation of ∂ 2discount

∂σ∂λ
shows:

∂ 2discount
∂σ∂λ

=
(1−β )(β +1)2

(−βλ +β +λ +1)2(−βσ +β +σ)2 > 0, (4.23)

where β < 1. This completes the proof.
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